P7.4-5) Packages travel on a smooth track that delivers them to a conveyor belt. Initially, the packages move along a flat section of the track and then proceed to a curved portion of radius *r*. Determine the minimum entry velocity to the curved portion (v_A) such that the packages will not start separating from the track until they reach position *C*. Also, calculate the acceleration of the packages at position *B* if the packages enter the curved section with the previously calculated minimum velocity. Determine v_A and \mathbf{a}_B in terms of the radius (*r*) and the acceleration due to gravity (*g*).

Given:

*C B r A P*7.4-5

Find:

 $v_B =$

Solution:

Is this a conservative or non-conservative system?	Newton's Laws
Conservative Non-conservative	Draw a free-body diagram of the package at position <i>B</i> .
Work-Energy Balance	
Solve for the minimum speed of the package at position <i>A</i> .	
<i>v</i> _A =	Solve for the acceleration of the package at position <i>B</i> .
Using the speed at position A , solve for the speed at position B .	

 $a_A =$